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Abstract — We present a new integrated device for
monitoring heart rate at the wrist using an optical
measure. Motion robustness is obtained by using ac-
curate motion reference signals of 3D low noise ac-
celerometers together with dual channel optical sens-
ing. Nonlinear modelling allows to remove the motion
contributions in the optical signals and the spatial di-
versity of the sensors is used to remove reciprocal con-
tributions in the two channels. Finally a statistical
estimation, based on physiological properties of the
heart, gives a robust estimation of the heart rate.
Qualitative and quantitative performance evaluation
of the performances on real signals clearly show that
the proposed system gives an accurate estimation of
the heart rate, even under intense physical activity.

1 Introduction

Portable heart rate monitoring devices are classically composed
of a processing device and an external probe (e.g. electronic
stethoscope, optical measure at ear lobe, chest belt for ECG
based measurement, etc.). The use of an external probe is of-
ten considered as a reduction of the comfort. In this paper we
propose a new fully integrated measurement system1 that is
located at the wrist. This system is based on dual-channel
optical measurement of the subcutaneous blood flow, accu-
rate measure of the motion provided by accelerometers and
advanced signal processing techniques to obtain robust and
reliable estimation of the heart rate. The optical measure is
based on photoplestysmography (PPG), which has been used
widely over the past for the estimation of cardiovascular pa-
rameters such as for example pulse oximetry and heart rate [1].
Corruption of the PPG signal arises from influences of ambient
light and motion of the subject. These artifacts lead to erro-
neous interpretation of PPG signals and degrade the accuracy
and reliability of PPG-based algorithms for the estimation of
cardiovascular parameters.
Processing of ambient light artifact is not critical because the
influence of ambient light can be measured using multiplex-
ing techniques and the PPG signal can be restored using a
subtractive-type techniques [2]. In contrast, processing of mo-
tion artifacts is a though task since its contribution exceeds
often the contribution of the useful pulse-related signal by an
order of magnitude. It is caused by mechanical forces that
induces changes in the optical coupling and the optical prop-
erties of the tissue. Several methods have been proposed to
reduce motion artifacts in PPG signals. Feature-based algo-
rithms have been proposed to discard the corrupted segments

1subject of a patent application

from the signals [3]. This kind of approach allows one to reduce
the occurrence of false-alarm in clinical environments, but it
often degrades the signals with small motion artifact contribu-
tions. This could lead to erroneous estimation of cardiovascu-
lar parameters. In order to circumvent this drawback, model-
based noise cancelling techniques have been applied more re-
cently for the enhancement of optical signals [4, 5, 6, 7]. In
such approaches a reference signal of motion is recorded and a
parametric model is used subsequently to retrieve motion re-
lated influences in the optical signals [8]. Nevertheless, motion
references are classically obtained by piezo-sensors or optical
measures and convey therefore only incomplete or local infor-
mation of motion. This degrades the performance of model-
based noise cancelling techniques since they require complete
and low-noise motion reference signal [8].
In the proposed approach, a fully integrated three dimensional
accelerometer, developed within our company, is used to pro-
vide a reliable motion reference. The reliability of this refer-
ence signal is ensured by the high accuracy and very low noise
of the accelerometer. To achieve efficient removal of motion
related artifacts in the optical signals, nonlinear model-based
techniques are applied. In order to grasp the spatial diversity
of the optical characteristics of the tissue, two optical sensors
are used. Eventually, the heart rate is estimated from the
enhanced signals using inter-beat extraction based on phys-
iological properties of cardiac cells and maximum likelihood
histogram clustering of the resulting time series.

2 Physical model

The principle of the proposed method resides in emitting an
optical infra-red (IR) signal at the surface of the body tissue.
This signal is then propagated through the tissue where it is
submitted to modifications due to reflection, refraction, scat-
tering and absorption. The resulting signal, after propagation
through the tissue is grasped by one or multiples optical sen-
sors, which are located at distance of about 10 mm around the
optical source. Since variations of optical tissue characteris-
tics are related to variations in the subcutaneous blood flow,
the received signal can be used for the estimation of the heart
rate.
When light is transmitted through biological tissue, several
mechanisms are involved in the interaction between the light
and the tissue. These interactions are reflection, refraction,
scattering and absorption. Reflection and refraction occur at
the interfaces between the probe and the subject. Scattering
is due to the microscopic variations of the dielectric properties
of the tissue. These variations are due to the cell membranes
and the subcellular components (e.g. mitochondria and nu-
clei). For infra-red (IR) light, the absorption is mainly due
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to chromophores such as hemoglobin, myoglobin, cytochrome,
melanin, lipid, bilirubin and water. The relative importance
depends on the wavelength considered and their distribution
in the tissue.
Under ideal steady-state condition, the received IR light signal
contains both a constant and a time varying component. The
constant component is generally ascribed to baseline absorp-
tion of blood and soft tissue, non expansive tissue such as bone,
as well reflectance loss [6]. The varying component reflects the
modification of the effective path length due to the expansion
of the tissues subject to the varying blood pressure.
For the near IR wavelength, the light propagation into the
tissue is governed by scattering and absorption [9]. The Beer-
Lambert equation is generally used to describe the phenomenon
of light absorbtion in biological tissue [6]:

Io(t) = Ii(t) · exp
(
−

n∑
j=1

ελ,jcj(t)dj(t)

)
(1)

where Ii and Io are the input and output light intensity, λ is
the wavelength of light and cj , dj(t) and ελ,j represent, re-
spectively, the concentrations, the spanning path length and
the absorption coefficient of the different components.
Voluntary or involuntary movements corrupt the PPG signal
and create motion related artifacts. It is generally accepted
that motion artifacts are mainly due to modification of the op-
tical properties of the tissue (modification of blood pressure,
modification of the optical path, etc.) [10]. These modifica-
tions affect the corresponding components of the Beer-Lambert
equation (Eq. 2). Therefore, in presence of motion artifact, the
received intensity can be rewritten in function of the major
contributions:

Io(t) = Ii(t) · γtissue · γpulse(t) · γgravitiy(t) · γmotion(t) (2)

where γtissue is the static attenuation due to the tissue,
γpulse(t) is due to pulsatile absorption of the blood, γgravity(t)
is due to change of position and γmotion(t) is due to the dy-
namic changes of the tissue induced by the movement of the
arm. It is obvious that the different contributions becomes ad-
ditive if one takes the logarithm of Eq. 2.
When the subject is static, only the contribution of γpulse(t)
changes with the time and it is then straightforward to remove
the other contributions using a high-pass filtering. When the
subject is moving the contribution of the gravity and the modi-
fication of the interface are varying with the time and they have
to be removed from the signals in order to allow an accurate
estimation of the heart rate. The contribution of the gravity
are at low frequency and can be removed using an adaptation
of the gain. The contribution of the motion is difficult to re-
move, especially if it is in the same frequency band as the heart
rate. Therefore techniques have to be developed in order to the
remove the motion artifact to obtain an accurate estimation of
the heart rate.

3 Proposed method

A. Global Description

It as been shown above that IR-signals recorded at the wrist are
mainly affected by perturbations, such as tissue modifications,
motion and gravity related artifacts. The main issue of this
work resides in the estimation of the mean heart rate from short
time recordings of IR-signals (10 seconds). It is assumed that
the tissue properties do not vary over the considered duration
and for a dual channel approach the log-corrected observed

IR-signals given by Eq. 2 can be written as:

y1(t) = s1(t) + nm1(t) + n1(t)
y2(t) = s2(t) + nm2(t) + n2(t)

t = 0, . . . , Nt − 1

where s1(t), s2(t) are pulse pressure related signal contribu-
tions, nm1(t), nm2(t) are artifacts due to motion and grav-
ity, n1(t), n2(t) include measurement noise and non-modelled
stochastic signal contributions and Nt is the number of ob-
served samples. To obtain a robust pulse detection in a large
variety of experimental conditions, namely non-stationary en-
vironment, the proposed method works on a frame-to-frame
basis with a frame duration of 3 seconds and it consists of
mainly of a three step algorithm (see Figure 1). In a first step,
the two observed optical signals (y1, y2) are enhanced using
nonlinear, model-based noise cancelling techniques [8, 11, 12].
The motion reference required by such techniques is obtained
by a completely integrated three-dimensional accelerometer de-
veloped within our company. The high accuracy and sensibility
of this accelerometer ensures reliable reference signals, which
is essential in model based noise cancelling techniques [8]. The
nonlinear modelling consists in a polynomial expansion model
and an associated model selection based on the Minimum De-
scription Length criterion (MDL) [11]. This avoids an overfit-
ting of the time series and ensures in this way that no pulse
pressure related signal contributions are cancelled. The goal
of the second step is to remove measurement noise and non-
modelled stochastic signal contributions in the two recorded
channels. This is achieved by a noise reduction algortihm based
on spatio-temporal principal component analysis (PCA) [13].
Additionally, spatio-temporal PCA allows one to reduce arti-
facts related to finger-movements, which are generally not can-
celled in step 1. Indeed, finger movements do not necessarily
imply a global displacement of the forearm and are therefore
not grasped by the accelerometers. In contrast, finger move-
ments imply often tiny, reciprocal tendon related displacement
of the forearm tissue, which yields reciprocal artifact contri-
bution in the two recording channels. Due to the reciprocity
of the signal contribution they can efficiently be cancelled by
a spatio-temporal PCA [13]. Eventually, the third step, re-
sides in the pulse detection on the enhanced IR-signals. It
consists of an inter-beat interval extraction achieved through
a classical maximum detection procedure with inhibition of
peak detection during a the refractory period of cardiac cells.
Subsequently, a maximum likelihood histogram clustering of
the resulting inter-beat intervals is performed [14]. In order
to cope with highly non-stationary environments, inter-beat
intervals of non-stationary segments are discarded. The sta-
tionarity is assessed through classification of the parameters of
the nonlinear model throughout subsequent frames [15]. It has
to be pointed out that this clustering technique allows one to
eliminate outliers, cope with non-symmetric inter-beat inter-
val distributions and construct a reliability measure of the es-
timated pulse. From the two enhanced signals, one can obtain
two candidate signals for pulse detection, namely after PCA
based enhancement of signal 1 and of signal 2. Eventually, a
robust a reliable estimate of the pulse is obtained through a
nonlinear mapping of the two candidate values in function of
their reliability measures. The nonlinear mapping is achieved
by multiple layer perceptron (MLP), which has been trained
on data of various experimental setup [16].

B. Parsimonious nonlinear Modelling

A key element in the proposed algorithm is the nonlinear
model, which provides an estimation of the motion related
contributions in the observed IR-signals. The relationship be-
tween time varying optical characteristics and its influence on
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Figure 1: The proposed dual channel pulse detection algo-
rithm based on nonlinear model based motion artifact can-
celling, coherence based reduction of measurement noise
and stochastic signal contributions and a pulse detection
using maximum likelihood histogram clustering .

IR-signal is globally described by the Beer-Lambert law. Even
though, one can obtain linear characteristics of these variations
of the optical characteristics by a logarithmic transformation,
their relationship to a global reference motion signal, such as
the one grasped by the accelerometers is complex and may be
nonlinear. In order to take into account of these potential non-
linear contributions, a third order polynomial moving average
model NMA has been applied [11, 12]. Moreover, since the
model includes a parsimonious selection criterion (MDL) to-
gether with an efficient search algorithm, linear terms are first
tested first nonlinear higher order polynomial terms are only
included if they are required for an efficient and parsimonious
description of the data at disposal. Thus, due to the efficiency
of the MDL-based parameter selection, overfitting of the time
series is avoided and high model based noise reduction can be
achieved.

C. Noise Reduction by Spatio-Temporal PCA

Noise reduction based on PCA has been shown to provide high
enhancement performance in various applications [17, 18, 19].
To take simultaneously advantage of the spatial and temporal
correlations existing between and within the observed noisy sig-
nals, spatio-temporal PCA has been applied. The basic idea
behind PCA-based noise reduction is to observe the noisy data
in a large m–dimensional space of delayed coordinates. Since
noise is assumed to be random, it extends approximately in
a uniform manner in all the directions of this space. In con-
trast, the dynamics of the deterministic systems underlying the
data confine the trajectories of the useful signals to a lower–
dimensional subspace of dimension p < m. Consequently, the
eigenspace of the observed noisy mixtures is partitioned into
a noise and a signal–plus–noise subspace and noise reduction
is performed by projecting the noisy mixtures onto the signal-
plus-noise subspace. The main problem in PCA-based noise
reduction algorithms is the optimal choice of the parameters
p and m. For the selection of the optimal PCA dimension m
we can benefit from the fact that in the given biomedical ap-
plication we are dealing with signals containing quasi–periodic
contributions. The embedding dimension can therefore be es-
timated from the bandwidth of these quasi–periodic contribu-
tions [13]. On the other hand the choice of p is not critical
in this application since we are looking mainly for one quasi–
periodic contribution which is represented by p = 2.

2.5 3 3.5 4 4.5 5 5.5
−2

0

2

y

t [sec]

2.5 3 3.5 4 4.5 5 5.5
−2

0

2

s M
A

t [sec]

2.5 3 3.5 4 4.5 5 5.5
−2

0

2

s PC
A

t [sec]

2.5 3 3.5 4 4.5 5 5.5
−2

0
2
4
6

E
C

G

t [sec]

Figure 2: Typical results for signal enhancement under
physical activity. Represented are results for one channel:
IR signal y(t), signal after enhancement by MA modelling
sMA(t), signal after enhancement by MA modelling and
subsequent spatio-temporal PCA sPCA(t), and eventually
the surface electrocardiogram ECG recorded for the vali-
dation of the method.

4 Performance Assessment

In order to achieve an assessment of the performance of the
proposed pulse detection device in natural environments quali-
tative and quantitative validations have been performed under
various experimental conditions. The experimental protocol
has been conducted on 5 subjects including resting baseline
conditions Ba and physical activity Pa (running at 30, 60 and
90 movements per minute). Under each condition, 10 seconds
of data have been recorded using the following system:

• Optical probe: The optical probe is composed of three el-
ements: a light emitting device (LED) which constitutes
the optical source. Two photo diodes located at each
side of the LED in order to grasp the spatial diversity of
the optical characteristics of the tissue.

• Motion reference: A fully integrated, low-power three
dimensional accelerometer developed within our com-
pany, which provides low-noise reference signals of mo-
tion. probe.

Simultaneously, the surface electrocardiogram (ECG) has been
measured for validation purposes. All the signals have been
recorded at a sampling frequency of 500 Hz.
In order to illustrate the performance of our system in a qual-
itative way, a typical results of signal enhancement achieved
by the proposed signal processing techniques is shown in Fig-
ure 2. One can easily observe that the recorded IR-signals
(y(t)) are strongly affected by the movement related artifacts.
Indeed, this IR-signal contains numerous peaks which can be
associated to motion. Moreover, some pulse related peaks are
displaced due to the influence of motion. After model based
artifact cancelling pulse related peaks are recovered, while mo-
tion related contributions are discarded. Eventually, residual
noise contributions due to tiny local movements not grasped by
the accelerometers, modelling errors and other stochastic influ-
ences are removed by spatio-temporal PCA. Spatio-temporal
PCA is well suited for this problem since it enhances contribu-
tions in the two signals obtained after model-based noise reduc-



Baseline Running
Relative error [%] -0.7±1.4 1.6 ±9.5

Table 1: Results of pulse estimation from IR signals under
baseline conditions and physical activity. Represented are
the mean value and standard deviation of the relative error
for five subjects.

tion while discarding non-correlated reciprocal contributions as
the ones related to finger movements. A thorough analysis of
the resulting signal sPCA(t) highlights that the information of
inter-beat interval is recovered up to a delay, which can be as-
sociated to the applied signal processing techniques. The pro-
posed multidimensional signal enhancement techniques paves
thus the way to robust pulse detection in adverse motion dis-
turbed environments.
A qualitative validation of the proposed pulse detection algo-
rithm has been performed using the ECG as a reference. The
mean value and standard deviation over all subjects and for
the given experimental protocol are shown in Table 1. The
analysis of these results underlines the robustness of the pro-
posed pulse detection algorithm. Indeed, for resting baseline
conditions the relative error is of about one percent. Under
physical activity the mean value over all subjects increases only
slightly, while the standard deviation remains nevertheless be-
low ten percent. These results underline the robustness of the
proposed approach since consistent and reliable pulse estimates
are obtained under various experimental conditions. Eventu-
ally, it has to be pointed out that the application of nonlinear
instead of linear modelling decreases the standard deviation of
the detected heart rate of about one to two percent. This is
mainly due to the inclusion of the parsimonious MDL-based
model selection, which avoids an overfitting of the time se-
ries. Indeed, the full nonlinear model would retain pulse re-
lated components in the estimate of the motion artifact. Since
these components are subtracted from the optical signals, the
quality of the enhanced signal and consequently the reliability
of the estimated pulse are reduced. In contrast, MDL selects
only movement related parameters in the model, which yields
higher enhancement performance and a more accurate pulse
estimation in adverse noisy environments.

5 Conclusions

In this paper we have presented a new approach for the esti-
mation of the heart rate using optical measure of the tissue
at the wrist. The use of acceleration signals and nonlinear
modelling techniques allows to obtain a reliable measure even
in presence of motion artifacts. The main advantage of this
technique is that the measurement device can be fully inte-
grated into a watch, avoiding the need of an external probe as
in actual systems. The results obtained clearly show that the
proposed approach make it possible to develop a new kind of
device for heart rate monitoring during physical activity.
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